Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
1.
Alcohol ; 107: 136-143, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36150609

RESUMO

Alcohol use among older adults is on the rise. This increase is clinically relevant as older adults are at risk for increased morbidity and mortality from many alcohol-related chronic diseases compared to younger patients. However, little is known regarding the synergistic effects of alcohol and age. There are intriguing data suggesting that aging may lead to impaired intestinal barrier integrity and dysbiosis of the intestinal microbiome, which could increase susceptibility to alcohol's negative effects. To study the effects of alcohol in age we exposed aged and young mice to 3 days of moderate ethanol and evaluated changes in gut parameters. We found that these levels of drinking do not have obvious effects in young mice but cause significant alcohol-induced gut barrier dysfunction and expression of the pro-inflammatory cytokine TNFα in aged mice. Ethanol-induced downregulation of expression of the gut-protective antimicrobial peptides Defa-rs1, Reg3b, and Reg3g was observed in aged, but not young mice. Analysis of the fecal microbiome revealed age-associated shifts in microbial taxa, which correlated with intestinal and hepatic inflammatory gene expression. Taken together, these data demonstrate that age drives microbiome dysbiosis, while ethanol exposure in aged mice induces changes in the expression of antimicrobial genes important for separating these potentially damaging microbes from the intestinal lumen. These changes highlight potential mechanistic targets for prevention of the age-related exacerbation of effects of ethanol on the gut.


Assuntos
Disbiose , Etanol , Microbioma Gastrointestinal , Inflamação , Intestinos , Animais , Camundongos , Peptídeos Antimicrobianos/genética , Peptídeos Antimicrobianos/imunologia , Citocinas/imunologia , Disbiose/induzido quimicamente , Disbiose/genética , Disbiose/imunologia , Disbiose/microbiologia , Etanol/farmacologia , Etanol/toxicidade , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/imunologia , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/imunologia , Inflamação/microbiologia , Intestinos/efeitos dos fármacos , Intestinos/imunologia , Intestinos/microbiologia , Camundongos Endogâmicos C57BL , Permeabilidade/efeitos dos fármacos , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia , alfa-Defensinas/genética , alfa-Defensinas/imunologia
2.
J Virol ; 96(6): e0185021, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35080426

RESUMO

Intramuscular delivery of human adenovirus (HAdV)-based vaccines leads to rapid recruitment of neutrophils, which then release antimicrobial peptides/proteins (AMPs). How these AMPs influence vaccine efficacy over the subsequent 24 h is poorly understood. In this study, we asked if human neutrophil protein 1 (HNP-1), an α-defensin that influences direct and indirect innate immune responses to a range of pathogens, impacts the response of human phagocytes to three HAdV species/types (HAdV-C5, -D26, -B35). We show that HNP-1 binds to the capsids and redirects HAdV-C5, -D26, and -B35 to Toll-like receptor 4 (TLR4), which leads to internalization, an NLRP3-mediated inflammasome response, and interleukin 1 beta (IL-1ß) release. Surprisingly, IL-1ß release was not associated with notable disruption of plasma membrane integrity. These data further our understanding of HAdV vaccine immunogenicity and may provide pathways to extend the efficacy. IMPORTANCE This study examines the interactions between danger-associated molecular patterns and human adenoviruses, and their impact on vaccines. HAdVs and HNP-1 can interact, and these interactions will modify the response of antigen-presenting cells, which will influence vaccine efficacy.


Assuntos
Infecções por Adenoviridae , Vacinas contra Adenovirus , Adenovírus Humanos , Fagócitos , Receptor 4 Toll-Like , alfa-Defensinas , Infecções por Adenoviridae/imunologia , Vacinas contra Adenovirus/imunologia , Adenovírus Humanos/imunologia , Humanos , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fagócitos/citologia , Fagócitos/metabolismo , Receptor 4 Toll-Like/metabolismo , alfa-Defensinas/imunologia
3.
Br J Haematol ; 196(4): 923-927, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34622440

RESUMO

Patients who are severely affected by coronavirus disease 2019 (COVID-19) may develop a delayed onset 'cytokine storm', which includes an increase in interleukin-6 (IL-6). This may be followed by a pro-thrombotic state and increased D-dimers. It was anticipated that tocilizumab (TCZ), an anti-IL-6 receptor monoclonal antibody, would mitigate inflammation and coagulation in patients with COVID-19. However, clinical trials with TCZ have recorded an increase in D-dimer levels. In contrast to TCZ, colchicine reduced D-dimer levels in patients with COVID-19. To understand how the two anti-inflammatory agents have diverse effects on D-dimer levels, we present data from two clinical trials that we performed. In the first trial, TCZ was administered (8 mg/kg) to patients who had a positive polymerase chain reaction test for COVID-19. In the second trial, colchicine was given (0·5 mg twice a day). We found that TCZ significantly increased IL-6, α-Defensin (α-Def), a pro-thrombotic peptide, and D-dimers. In contrast, treatment with colchicine reduced α-Def and Di-dimer levels. In vitro studies show that IL-6 stimulated the release of α-Def from human neutrophils but in contrast to colchicine, TCZ did not inhibit the stimulatory effect of IL-6; raising the possibility that the increase in IL-6 in patients with COVID-19 treated with TCZ triggers the release of α-Def, which promotes pro-thrombotic events reflected in an increase in D-dimer levels.


Assuntos
Anti-Inflamatórios/uso terapêutico , Anticorpos Monoclonais Humanizados/uso terapêutico , Tratamento Farmacológico da COVID-19 , Colchicina/uso terapêutico , Produtos de Degradação da Fibrina e do Fibrinogênio/análise , alfa-Defensinas/imunologia , Idoso , Coagulação Sanguínea/efeitos dos fármacos , COVID-19/sangue , COVID-19/imunologia , Síndrome da Liberação de Citocina/sangue , Síndrome da Liberação de Citocina/tratamento farmacológico , Síndrome da Liberação de Citocina/imunologia , Feminino , Produtos de Degradação da Fibrina e do Fibrinogênio/imunologia , Humanos , Interleucina-6/sangue , Interleucina-6/imunologia , Masculino , Pessoa de Meia-Idade , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia
4.
Front Immunol ; 12: 632513, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33897688

RESUMO

Objectives: Rheumatoid arthritis (RA) is a chronic, inflammatory joint disease with complex pathogenesis involving a variety of immunological events. Recently, it has been suggested that kynurenic acid (KYNA) might be a potential regulator of inflammatory processes in arthritis. KYNA has a definitive anti-inflammatory and immunosuppressive function. The aim of the present study is to investigate the complex effects of a newly synthesized KYNA analog-SZR72 on the in vitro production of tumor necrosis factor-α (TNF-α), tumor necrosis factor-stimulated gene-6 (TSG-6), calprotectin (SA1008/9), SA100 12 (EN-RAGE), and HNP1-3 (defensin-α) in the peripheral blood of patients with RA and the various effects of the disease. Methods: Patients with RA (n = 93) were selected based on the DAS28 score, medication, and their rheumatoid factor (RF) status, respectively. Peripheral blood samples from 93 patients with RA and 50 controls were obtained, and activated by heat-inactivated S. aureus. Parallel samples were pretreated before the activation with the KYNA analog N-(2-N, N-dimethylaminoethyl)-4-oxo-1H-quinoline-2-carboxamide hydrochloride. Following the incubation period (18 h), the supernatants were tested for TNF-α, TSG-6, calprotectin, S100A12, and HNP1-3 content by ELISA. Results: SZR72 inhibited the production of the following inflammatory mediators: TNF-α, calprotectin, S100A12, and HNP1-3 in whole blood cultures. This effect was observed in each group of patients in various phases of the disease. The basic (control) levels of these mediators were higher in the blood of patients than in healthy donors. In contrast, lower TSG-6 levels were detected in patients with RA compared to healthy controls. In addition, the KYNA analog exerted a stimulatory effect on the TSG-6 production ex vivo in human whole blood cultures of patients with RA in various phases of the disease. Conclusion: These data further support the immunomodulatory role of KYNA in RA resulting in anti-inflammatory effects and draw the attention to the importance of the synthesis of the KYNA analog, which might have a future therapeutic potential.


Assuntos
Anti-Inflamatórios/farmacologia , Artrite Reumatoide/imunologia , Mediadores da Inflamação/imunologia , Ácido Cinurênico/análogos & derivados , Idoso , Artrite Reumatoide/sangue , Moléculas de Adesão Celular/sangue , Moléculas de Adesão Celular/imunologia , Feminino , Humanos , Mediadores da Inflamação/sangue , Ácido Cinurênico/farmacologia , Masculino , Pessoa de Meia-Idade , Fator Reumatoide/sangue , Proteínas S100/sangue , Proteínas S100/imunologia , Staphylococcus aureus/imunologia , Fator de Necrose Tumoral alfa/sangue , Fator de Necrose Tumoral alfa/imunologia , alfa-Defensinas/sangue , alfa-Defensinas/imunologia
5.
Inflamm Bowel Dis ; 27(7): 1116-1127, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33336693

RESUMO

BACKGROUND: The first visible signs of Crohn's disease (CD) are microscopic erosions over the follicle-associated epithelium (FAE). The aim of the study was to investigate the effects of human α-defensin 5 (HD5) on adherent-invasive Escherichia coli LF82 translocation and HD5 secretion after LF82 exposure in an in vitro model of human FAE and in human FAE ex vivo. METHODS: An in vitro FAE-model was set up by the coculture of Raji B cells and Caco-2-cl1 cells. Ileal FAE from patients with CD and controls were mounted in Ussing chambers. The effect of HD5 on LF82 translocation was studied by LF82 exposure to the cells or tissues with or without incubation with HD5. The HD5 secretion was measured in human FAE exposed to LF82 or Salmonella typhimurium. The HD5 levels were evaluated by immunofluorescence, immunoblotting, and ELISA. RESULTS: There was an increased LF82 translocation across the FAE-model compared with Caco-2-cl1 (P < 0.05). Incubation of cell/tissues with HD5 before LF82 exposure reduced bacterial passage in both models. Human FAE showed increased LF82 translocation in CD compared with controls and attenuated passage after incubation with sublethal HD5 in both CD and controls (P < 0.05). LF82 exposure resulted in a lower HD5 secretion in CD FAE compared with controls (P < 0.05), whereas Salmonella exposure caused equal secretion on CD and controls. There were significantly lower HD5 levels in CD tissues compared with controls. CONCLUSIONS: Sublethal HD5 reduces the ability of LF82 to translocate through FAE. The HD5 is secreted less in CD in response to LF82, despite a normal response to Salmonella. This further implicates the integrated role of antimicrobial factors and barrier function in CD pathogenesis.


Assuntos
Doença de Crohn , Epitélio/microbiologia , Escherichia coli/patogenicidade , Doenças do Íleo , alfa-Defensinas , Células CACO-2 , Doença de Crohn/microbiologia , Doença de Crohn/patologia , Epitélio/patologia , Humanos , alfa-Defensinas/imunologia
6.
Infect Immun ; 88(9)2020 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-32571989

RESUMO

Staphylococcus aureus is a major human pathogen, and the emergence of antibiotic-resistant strains is making all types of S. aureus infections more challenging to treat. With a pressing need to develop alternative control strategies to use alongside or in place of conventional antibiotics, one approach is the targeting of established virulence factors. However, attempts at this have had little success to date, suggesting that we need to better understand how this pathogen causes disease if effective targets are to be identified. To address this, using a functional genomics approach, we have identified a small membrane-bound protein that we have called MspA. Inactivation of this protein results in the loss of the ability of S. aureus to secrete cytolytic toxins, protect itself from several aspects of the human innate immune system, and control its iron homeostasis. These changes appear to be mediated through a change in the stability of the bacterial membrane as a consequence of iron toxicity. These pleiotropic effects on the ability of the pathogen to interact with its host result in significant impairment in the ability of S. aureus to cause infection in both a subcutaneous and sepsis model of infection. Given the scale of the effect the inactivation of MspA causes, it represents a unique and promising target for the development of a novel therapeutic approach.


Assuntos
Bacteriemia/microbiologia , Evasão da Resposta Imune , Infecções Estafilocócicas/microbiologia , Infecções Cutâneas Estafilocócicas/microbiologia , Staphylococcus aureus/patogenicidade , Fatores de Virulência/genética , Células A549 , Animais , Bacteriemia/imunologia , Bacteriemia/patologia , Toxinas Bacterianas/genética , Toxinas Bacterianas/imunologia , Eritrócitos/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Heme/imunologia , Heme/metabolismo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/imunologia , Homeostase/imunologia , Humanos , Ferro/imunologia , Ferro/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Mutação , Fagocitose , Proteômica/métodos , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/patologia , Infecções Cutâneas Estafilocócicas/imunologia , Infecções Cutâneas Estafilocócicas/patologia , Toxoide Estafilocócico/genética , Toxoide Estafilocócico/imunologia , Staphylococcus aureus/genética , Staphylococcus aureus/imunologia , Células THP-1 , Virulência , Fatores de Virulência/imunologia , Fatores de Virulência/toxicidade , alfa-Defensinas/genética , alfa-Defensinas/imunologia
7.
Antiviral Res ; 177: 104779, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32209394

RESUMO

Human cytomegalovirus (HCMV) infection causes severe illness in newborns and immunocompromised patients. Since treatment options are limited there is an unmet need for new therapeutic approaches. Defensins are cationic peptides, produced by various human tissues, which serve as antimicrobial effectors of the immune system. Furthermore, some defensins are proteolytically cleaved, resulting in the generation of smaller fragments with increased activity. Together, this led us to hypothesize that defensin-derived peptides are natural human inhibitors of virus infection with low toxicity. We screened several human defensin HNP4- and HD5-derived peptides and found HD5(1-9) to be antiviral without toxicity at high concentrations. HD5(1-9) inhibited HCMV cellular attachment and thereby entry and was active against primary as well as a multiresistant HCMV isolate. Moreover, cysteine and arginine residues were identified to mediate the antiviral activity of HD5(1-9). Altogether, defensin-derived peptides, in particular HD5(1-9), qualify as promising candidates for further development as a novel class of HCMV entry inhibitors.


Assuntos
Citomegalovirus/fisiologia , Ligação Viral , Internalização do Vírus , alfa-Defensinas/imunologia , Sequência de Aminoácidos , Linhagem Celular , Humanos , Concentração Inibidora 50 , Alinhamento de Sequência , Células THP-1
8.
Clin Transl Gastroenterol ; 10(10): e00083, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31663908

RESUMO

INTRODUCTION: DNA methylation is an epigenetic mechanism that regulates gene expression and represents an important link between genotype, environment, and disease. It is a reversible and inheritable mechanism that could offer treatment targets. We aimed to assess the methylation changes on specific genes previously associated with Crohn's disease (CD) and to study their possible associations with the pathology. METHODS: We included 103 participants and grouped them into 2 cohorts (a first [n = 31] and a second validation [n = 72] cohort), with active CD (aCD) and inactive CD (iCD) and healthy participants (CTR). DNA was obtained from the peripheral blood and analyzed by the Agena platform. The selected genes were catalase (CAT), α-defensin 5 (DEFA5), FasR, FasL, tumor necrosis factor (TNF), TNFRSF1A, TNFRSF1B, PPA2, ABCB1, NOD2, PPARγ, and PKCζ. We used the elastic net algorithm and R software. RESULTS: We studied 240 CpGs. Sixteen CpGs showed differential methylation profiles among aCD, iCD, and CTR. We selected for validation those with the greatest differences: DEFA5 CpG_11; CpG_13; CAT CpG_31.32; TNF CpG_4, CpG_12; and ABCB1 CpG_21. Our results validated the genes DEFA5 (methylation gain) and TNF (methylation loss) with P values < 0.001. In both cases, the methylation level was maintained and did not change with CD activity (aCD vs iCD). The subanalysis comparison between aCD and iCD showed significant differential methylation profiles in other CpGs: TNF, FAS, ABCB1, CAT, and TNFRS1BF genes. DISCUSSION: The methylation status of DEFA5 and TNF genes provides a signature biomarker that characterizes patients with CD and supports the possible implication of the environment and the immune system in CD pathogenesis.


Assuntos
Doença de Crohn/diagnóstico , Metilação de DNA/imunologia , Epigênese Genética/imunologia , Fator de Necrose Tumoral alfa/genética , alfa-Defensinas/genética , Adolescente , Adulto , Biomarcadores/análise , Estudos de Casos e Controles , Doença de Crohn/genética , Doença de Crohn/imunologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Fator de Necrose Tumoral alfa/imunologia , Adulto Jovem , alfa-Defensinas/imunologia
9.
Proc Natl Acad Sci U S A ; 116(8): 3161-3170, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30718392

RESUMO

Sepsis claims an estimated 30 million episodes and 6 million deaths per year, and treatment options are rather limited. Human neutrophil peptides 1-3 (HNP1-3) are the most abundant neutrophil granule proteins but their neutrophil content varies because of unusually extensive gene copy number polymorphism. A genetic association study found that increased copy number of the HNP-encoding gene DEFA1/DEFA3 is a risk factor for organ dysfunction during sepsis development. However, direct experimental evidence demonstrating that these risk alleles are pathogenic for sepsis is lacking because the genes are present only in some primates and humans. Here, we generate DEFA1/DEFA3 transgenic mice with neutrophil-specific expression of the peptides. We show that mice with high copy number of DEFA1/DEFA3 genes have more severe sepsis-related vital organ damage and mortality than mice with low copy number of DEFA1/DEFA3 or wild-type mice, resulting from more severe endothelial barrier dysfunction and endothelial cell pyroptosis after sepsis challenge. Mechanistically, HNP-1 induces endothelial cell pyroptosis via P2X7 receptor-mediating canonical caspase-1 activation in a NLRP3 inflammasome-dependent manner. Based on these findings, we engineered a monoclonal antibody against HNP-1 to block the interaction with P2X7 and found that the blocking antibody protected mice carrying high copy number of DEFA1/DEFA3 from lethal sepsis. We thus demonstrate that DEFA1/DEFA3 copy number variation strongly modulates sepsis development in vivo and explore a paradigm for the precision treatment of sepsis tailored by individual genetic information.


Assuntos
Predisposição Genética para Doença , Sepse/genética , alfa-Defensinas/genética , Alelos , Animais , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Variações do Número de Cópias de DNA/genética , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Humanos , Inflamassomos/genética , Inflamassomos/imunologia , Camundongos , Camundongos Transgênicos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Piroptose/genética , Piroptose/imunologia , Receptores Purinérgicos P2X7/genética , Fatores de Risco , Sepse/sangue , Sepse/patologia , alfa-Defensinas/antagonistas & inibidores , alfa-Defensinas/imunologia
10.
Semin Cell Dev Biol ; 88: 163-172, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-29501617

RESUMO

Defensins have been long recognized as natural antimicrobial peptides, but they also possess diverse and versatile immune functions. Defensins can both induce inflammation and suppress inflammatory responses by acting on specific cells through distinct mechanisms. Defensins can also modulate the immune response by forming a complex with cellular molecules including proteins, nucleic acids, and carbohydrates. The mechanisms of defensin-mediated immune modulation appear to be cell-type and context specific. Because the levels of human defensins are often altered in response to infection or disease states, suggesting their clinical relevance, this review summarizes the complex immune functions of human defensins and their underlying mechanisms of action, which have implications for the development of new therapeutics.


Assuntos
Imunidade Inata , Interleucinas/imunologia , Receptores Toll-Like/imunologia , alfa-Defensinas/imunologia , beta-Defensinas/imunologia , Sequência de Aminoácidos , Animais , Carcinogênese/genética , Carcinogênese/imunologia , Carcinogênese/patologia , Células Epiteliais/imunologia , Regulação da Expressão Gênica , Humanos , Interleucinas/genética , Receptores CCR6/genética , Receptores CCR6/imunologia , Transdução de Sinais , Receptores Toll-Like/genética , alfa-Defensinas/genética , beta-Defensinas/genética
11.
Semin Cell Dev Biol ; 88: 138-146, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-29355606

RESUMO

The gut is the biggest immune organ in the body that encloses commensal microbiota which aids in food digestion. Paneth cells, positioned at the frontline of host-microbiota interphase, can modulate the composition of microbiota. Paneth cells achieve this via the delivery of microbicidal substances, among which enteric α-defensins play the primary role. If microbiota is dysregulated, it can impact the function of the local mucosal immune system. Importantly, this system is also exposed to an enormous number of antigens which are derived from the gut-resident microbiota and processed food, and may potentially trigger undesirable local inflammatory responses. To understand the intricate regulations and liaisons between Paneth cells, microbiota and the immune system in this intestinal-specific setting, one must consider their mode of interaction in a wider context of regulatory processes which impose immune tolerance not only to self, but also to microbiota and food-derived antigens. These include, but are not limited to, tolerogenic mechanisms of central tolerance in the thymus and peripheral tolerance in the secondary lymphoid organs, and the intestine itself. Defects in these processes can compromise homeostasis in the intestinal mucosal immunity. In this review, which is focused on tolerance to intestinal antigens and its relevance for the pathogenesis of gut immune diseases, we provide an outline of such multilayered immune control mechanisms and highlight functional links that underpin their cooperative nature.


Assuntos
Disbiose/prevenção & controle , Trato Gastrointestinal/imunologia , Celulas de Paneth/imunologia , Tolerância Periférica , alfa-Defensinas/imunologia , Animais , Tolerância Central , Disbiose/imunologia , Disbiose/microbiologia , Microbioma Gastrointestinal/imunologia , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/microbiologia , Expressão Gênica/imunologia , Homeostase/imunologia , Humanos , Imunidade nas Mucosas/efeitos dos fármacos , Inflamação , Celulas de Paneth/efeitos dos fármacos , Celulas de Paneth/microbiologia , Simbiose/imunologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/microbiologia , alfa-Defensinas/biossíntese , alfa-Defensinas/farmacologia
13.
Blood ; 133(5): 481-493, 2019 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-30442678

RESUMO

Inflammation and thrombosis are integrated, mutually reinforcing processes, but the interregulatory mechanisms are incompletely defined. Here, we examined the contribution of α-defensins (α-defs), antimicrobial proteins released from activated human neutrophils, on clot formation in vitro and in vivo. Activation of the intrinsic pathway of coagulation stimulates release of α-defs from neutrophils. α-Defs accelerate fibrin polymerization, increase fiber density and branching, incorporate into nascent fibrin clots, and impede fibrinolysis in vitro. Transgenic mice (Def++) expressing human α-Def-1 developed larger, occlusive, neutrophil-rich clots after partial inferior vena cava (IVC) ligation than those that formed in wild-type (WT) mice. IVC thrombi extracted from Def++ mice were composed of a fibrin meshwork that was denser and contained a higher proportion of tightly packed compressed polyhedral erythrocytes than those that developed in WT mice. Def++ mice were resistant to thromboprophylaxis with heparin. Inhibiting activation of the intrinsic pathway of coagulation, bone marrow transplantation from WT mice or provision of colchicine to Def++ mice to inhibit neutrophil degranulation decreased plasma levels of α-defs, caused a phenotypic reversion characterized by smaller thrombi comparable to those formed in WT mice, and restored responsiveness to heparin. These data identify α-defs as a potentially important and tractable link between innate immunity and thrombosis.


Assuntos
Fibrina/imunologia , Ativação de Neutrófilo , Trombose/imunologia , alfa-Defensinas/imunologia , Animais , Coagulação Sanguínea , Fibrina/análise , Fibrinólise , Humanos , Inflamação/sangue , Inflamação/imunologia , Inflamação/patologia , Calicreínas/sangue , Calicreínas/imunologia , Masculino , Camundongos , Conformação Proteica , Estabilidade Proteica , Trombose/sangue , Trombose/patologia , alfa-Defensinas/sangue
14.
Acta Virol ; 62(3): 287-293, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30160144

RESUMO

Antimicrobial peptides produced by epithelial and immune cells protect tissues from various infections. Whether enterovirus infection leads to stimulation of antimicrobial peptide expression is unknown. We examined antimicrobial peptide mRNA and protein production in HT-29 colon adenocarcinoma cells infected with picornaviruses. The antiviral activity of increased antimicrobial peptide production was evaluated by using a recombinant peptide and corresponding gene overexpression. Enterovirus infection enhanced both the mRNA expression and secretion of human ß-defensin (hBD) 3 in intestinal epithelial cells but did not increase expression of human neutrophil peptide 1-3 (HNP 1-3), HNP4, human defensin 5 (HD5), HD6, hBD1, hBD2, and hBD5. The recombinant but not the intracellularly overexpressed hBD3 inhibited enterovirus (EV) 71, coxsackievirus A16 (CVA16), CVB5 and poliovirus 1 (PV1) infecting HT-29 cells. Our results suggest that enterovirus infection induces hBD3 production in human intestinal epithelial cells and that hBD3 can exert extracellular anti-enterovirus activity.


Assuntos
Infecções por Enterovirus/imunologia , Enterovirus/fisiologia , Intestinos/imunologia , beta-Defensinas/imunologia , Enterovirus/genética , Infecções por Enterovirus/virologia , Células HT29 , Humanos , Intestinos/virologia , alfa-Defensinas/genética , alfa-Defensinas/imunologia , beta-Defensinas/genética
15.
J Ethnopharmacol ; 214: 240-243, 2018 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-29248453

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Immunoglobulin A (IgA) secretion and alpha-defensins play a role in the innate immune system to protect against infection. Ganoderma lucidum (W.Curt.: Fr.) P. Karst. (Reishi) is a well-known mushroom in traditional Chinese medicine. This study aimed to determine the effects of Reishi on IgA secretion from Peyer's patch (PP) cells and alpha-defensin-5 (RD-5) and RD-6 expression in the rat small intestine. MATERIALS AND METHODS: The rats received an oral injection of 0.5-5mg/kg of Reishi powder (1mL/kg) by sonde. All animals were euthanized 24h after Reishi administration. We examined RD-5, RD-6, and Toll-like receptor (TLR) 4 mRNA levels in the jejunum, ileum, and in Peyer's patches (PP) through quantitative real-time PCR analysis. IgA secretion from PP was measured through enzyme-linked immunosorbent assay of the supernatant after primary culture. RESULTS: Reishi increased IgA secretion in the presence of lipopolysaccharide (LPS) and increased TLR4 mRNA levels, but had no effect on the viability of PP cells. Moreover, Reishi increased RD-5, RD-6, and TLR4 mRNA levels significantly in the ileum in a concentration-dependent manner. CONCLUSIONS: Reishi can induce IgA secretion and increase the mRNA levels of RD-5 and RD-6 in the rat small intestine, through a TLR4-dependent pathway. The present results indicate that Reishi might reduce the risk of intestinal infection.


Assuntos
Íleo/efeitos dos fármacos , Imunoglobulina A Secretora/metabolismo , Fatores Imunológicos/farmacologia , Jejuno/efeitos dos fármacos , Nódulos Linfáticos Agregados/efeitos dos fármacos , Reishi , alfa-Defensinas/metabolismo , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Íleo/imunologia , Íleo/metabolismo , Imunoglobulina A Secretora/imunologia , Fatores Imunológicos/isolamento & purificação , Jejuno/imunologia , Jejuno/metabolismo , Lipopolissacarídeos/farmacologia , Masculino , Camundongos Endogâmicos C3H , Nódulos Linfáticos Agregados/imunologia , Nódulos Linfáticos Agregados/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Wistar , Reishi/química , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/imunologia , Receptor 4 Toll-Like/metabolismo , Regulação para Cima , alfa-Defensinas/genética , alfa-Defensinas/imunologia
16.
Viruses ; 9(9)2017 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-28850095

RESUMO

Defensins are antimicrobial peptides important for mucosal innate immunity. They exhibit a broad spectrum of activity against bacteria, viruses, and fungi. Levels of α-defensins are elevated at the genital mucosa of individuals with sexually transmitted infections (STIs). Somewhat paradoxically, human α-defensin 5 and 6 (HD5 and HD6) promote human immunodeficiency virus (HIV) infectivity, and contribute to STI-mediated enhancement of HIV infection in vitro. Specific amino acid residues of HD5 and HD6 that are crucial for antimicrobial activities have been characterized previously; however, the key determinants of defensins responsible for enhancement of HIV infectivity are not known. Here, we have identified residues of HD5 and HD6 that are required for enhancement of HIV attachment and infection. Most of these residues are involved in hydrophobicity and self-association of defensins. Specifically, we found that mutant defensins L16A-HD5, E21me-HD5, L26A-HD5, Y27A-HD5, F2A-HD6, H27W-HD6, and F29A-HD6 significantly lost their ability to promote HIV attachment and infection. L29A mutation also reduced HIV infection-enhancing activity of HD5. Additionally, a number of mutations in charged residues variably affected the profile of HIV attachment and infectivity. One HD5 charged mutation, R28A, notably resulted in a 34-48% loss of enhanced HIV infectivity and attachment. These results indicate that defensin determinants that maintain high-ordered amphipathic structure are crucial for HIV enhancing activity. In a comparative analysis of the mutant defensins, we found that for some defensin mutants enhancement of HIV infectivity was associated with the reverse transcription step, suggesting a novel, HIV attachment-independent, mechanism of defensin-mediated HIV enhancement.


Assuntos
Infecções por HIV/imunologia , HIV-1/efeitos dos fármacos , HIV-1/imunologia , Ligação Viral/efeitos dos fármacos , alfa-Defensinas/farmacologia , DNA Viral , Infecções por HIV/genética , Infecções por HIV/metabolismo , Infecções por HIV/virologia , HIV-1/patogenicidade , HIV-1/fisiologia , Células HeLa , Humanos , Imunidade Inata/imunologia , Mutação , Transcrição Reversa/efeitos dos fármacos , alfa-Defensinas/administração & dosagem , alfa-Defensinas/genética , alfa-Defensinas/imunologia
17.
J Immunol Res ; 2017: 9671604, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28299345

RESUMO

The neutrophil is the major phagocyte and the final effector cell of the innate immunity, with a primary role in the clearance of extracellular pathogens. Using the broad array of cytokines, extracellular traps, and effector molecules as the humoral arm, neutrophils play a crucial role in the host defense against pathogen infections. On the other hand, the pathogen has the capacity to overcome neutrophil-mediated host defense to establish infection causing human disease. Pathogens, such as S. aureus, have the potential to thwart neutrophil chemotaxis and phagocytosis and thereby succeed in evading killing by neutrophils. Furthermore, S. aureus surviving within neutrophils promotes neutrophil cytolysis, resulting in the release of host-derived molecules that promote local inflammation. Here, we provide a detailed overview of the mechanisms by which neutrophils kill the extracellular pathogens and how pathogens evade neutrophils degradation. This review will provide insights that might be useful for the development of novel therapies against infections caused by antibiotic resistant pathogens.


Assuntos
Infecções Bacterianas/imunologia , Interações Hospedeiro-Patógeno , Imunidade Inata , Neutrófilos/imunologia , Neutrófilos/microbiologia , Fagocitose , Animais , Infecções Bacterianas/terapia , Quimiotaxia de Leucócito , Farmacorresistência Bacteriana Múltipla , Armadilhas Extracelulares/imunologia , Humanos , Evasão da Resposta Imune , Inflamação/imunologia , Neutrófilos/metabolismo , Receptores de Reconhecimento de Padrão/imunologia , alfa-Defensinas/imunologia , alfa-Defensinas/uso terapêutico
18.
Acc Chem Res ; 50(4): 960-967, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28296382

RESUMO

Human α-defensin 6 (HD6) is a 32-residue cysteine-rich peptide that contributes to innate immunity by protecting the host at mucosal sites. This peptide is produced in small intestinal Paneth cells, stored as an 81-residue precursor peptide named proHD6 in granules, and released into the lumen. One unusual feature of HD6 is that it lacks the broad-spectrum antimicrobial activity observed for other human α-defensins, including the Paneth cell peptide human α-defensin 5 (HD5). HD6 exhibits unprecedented self-assembly properties, which confer an unusual host-defense function. HD6 monomers self-assemble into higher-order oligomers termed "nanonets", which entrap microbes and prevent invasive gastrointestinal pathogens such as Salmonella enterica serovar Typhimurium and Listeria monocytogenes from entering host cells. One possible advantage of this host-defense mechanism is that HD6 helps to keep microbes in the lumen such that they can be excreted or attacked by other components of the immune system, such as recruited neutrophils. In this Account, we report our current understanding of HD6 and focus on work published since 2012 when Bevins and co-workers described the discovery of HD6 nanonets in the literature. First, we present studies that address the biosynthesis, storage, and maturation of HD6, which demonstrate that nature uses a propeptide strategy to spatially and temporally control the formation of HD6 nanonets in the small intestine. The propeptide is stored in Paneth cell granules, and proteolysis occurs during or following release into the lumen, which affords the 32-residue mature peptide that self-assembles. We subsequently highlight structure-function studies that provide a foundation for understanding the molecular basis for why HD6 exhibits unusual self-assembly properties compared with other characterized defensins. The disposition of hydrophobic residues in the HD6 primary structure differs from that of other human α-defensins and is an important structural determinant for oligomerization. Lastly, we consider functional studies that illuminate how HD6 contributes to mucosal immunity. We recently discovered that in addition to blocking bacterial invasion into host epithelial cells by Gram-negative and Gram-positive gastrointestinal pathogens, HD6 suppresses virulence traits displayed by the opportunistic human fungal pathogen Candida albicans. In particular, we found that C. albicans biofilm formation, which causes complications in the treatment of candidiasis, is inhibited by HD6. This observation suggests that HD6 may contribute to intestinal homeostasis by helping to keep C. albicans in its commensal state. We intend for this Account to inspire further biochemical, biophysical, and biological investigations that will advance our understanding of HD6 in mucosal immunity and the host-microbe interaction.


Assuntos
Fungos/imunologia , Bactérias Gram-Negativas/imunologia , Bactérias Gram-Positivas/imunologia , Imunidade Inata/imunologia , alfa-Defensinas/imunologia , Humanos , alfa-Defensinas/síntese química , alfa-Defensinas/química
19.
Infect Immun ; 85(6)2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28348052

RESUMO

In addition to their chemical antimicrobial nature, bile acids are thought to have other functions in the homeostatic control of gastrointestinal immunity. However, those functions have remained largely undefined. In this work, we used ileal explants and mouse models of bile acid administration to investigate the role of bile acids in the regulation of the intestinal antimicrobial response. Mice fed on a diet supplemented with 0.1% chenodeoxycholic acid (CDCA) showed an upregulated expression of Paneth cell α-defensins as well as an increased synthesis of the type-C lectins Reg3b and Reg3g by the ileal epithelium. CDCA acted on several epithelial cell types, by a mechanism independent from farnesoid X receptor (FXR) and not involving STAT3 or ß-catenin activation. CDCA feeding did not change the relative abundance of major commensal bacterial groups of the ileum, as shown by 16S analyses. However, administration of CDCA increased the expression of ileal Muc2 and induced a change in the composition of the mucosal immune cell repertoire, decreasing the proportion of Ly6G+ and CD68+ cells, while increasing the relative amount of IgGκ+ B cells. Oral administration of CDCA to mice attenuated infections with the bile-resistant pathogens Salmonella enterica serovar Typhimurium and Citrobacter rodentium, promoting lower systemic colonization and faster bacteria clearance, respectively. Our results demonstrate that bile acid signaling in the ileum triggers an antimicrobial program that can be potentially used as a therapeutic option against intestinal bacterial infections.


Assuntos
Ácido Quenodesoxicólico/administração & dosagem , Infecções por Enterobacteriaceae/imunologia , Íleo/microbiologia , Imunidade nas Mucosas , Infecções por Salmonella/imunologia , alfa-Defensinas/imunologia , Animais , Carga Bacteriana , Citrobacter rodentium/efeitos dos fármacos , Íleo/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Celulas de Paneth/imunologia , Celulas de Paneth/microbiologia , Salmonella typhimurium/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA